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A spectral analysis of anisotropic magnetohydrodynamic turbulence, in presence of a constant magnetic
field, is presented using high-resolution direct numerical simulations. A method of decomposing the spectral
space into ring structures is presented and the energy transfers between such rings are studied. This decom-
position method takes into account the angular dependency of energy transfers in anisotropic systems, while it
allows one to recover easily the known shell-to-shell energy transfers in the limit of isotropic turbulence. For
large values of the constant magnetic field, the total-energy transfer appears to be most dominant in the
direction perpendicular to the mean magnetic field. The linear transfer due to the constant magnetic also
appears to be important in redistributing the energy between the velocity and the magnetic fields.
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I. INTRODUCTION

The strong couplings between different scales in a flow
represent one of the primary attributes of turbulence. In the
turbulent regime, they are expressed mathematically by the
nonlinear terms that enter the fluid balance equations and
they dominate the dynamics of the flow. In three-dimensional
fluid turbulence, these couplings are the channel used to
transfer the kinetic energy from the large-scale range to the
small-scale range where dissipation takes place. In magneto-
hydrodynamics �MHD�, the momentum balance equation is
influenced by the Lorentz force and the number of nonlinear
terms is three instead of one of fluid turbulence. Various
channels can then be used to transfer the energy from the
large scales to the dissipative range.

The energy transfers in both fluid and MHD turbulence
are usually presented in spectral space by computing the en-
ergy exchanges between the Fourier modes. The energy
transfers between modes in turbulence are completely char-
acterized by triad interactions �1�. However, for strong-
turbulence regimes, the total number of modes active in the
system is too large to be represented systematically by the
triad interactions. Since the majority of modes have similar
properties as their wave-number neighbors and bring similar
contribution to the energy exchange between scales, the
analysis of energy transfers is usually simplified by partition-
ing the spectral space into subdomains and looking at the
averaged energy transfers between these subdomains �2�.
The partitioning of the spectral domain is arbitrary but sev-
eral convenient geometrical structures are preferred. The
spectral spherical symmetry present in the case of isotropic
turbulence naturally suggests a decomposition of the spectral
domain into wave-number shells. For this case the energy
transfer is described in terms of shell-to-shell transfer func-
tions and spherical energy fluxes that have been studied in
detail �3–6�.

In the presence of a mean magnetic field, the flow devel-
ops a preferred direction and exhibits anisotropy. The degree
of anisotropy depends on the strength of the mean magnetic
field �7,8�. The angular dependence with respect to the pre-

ferred direction then becomes as relevant as the wave-vector
amplitude in the spectral space partition, and a simple shell
decomposition is not sufficient for getting a more detailed
picture of energy transfers. Coaxial cylindrical domains
aligned with the preferred direction and planar domains
transverse to each direction have both been used in the past
to partition the spectral space �9�. In this paper, we propose
another partition that is based on a ring decomposition of
shells. Similar to the scheme proposed by Alexakis et al. �9�,
the present approach provides many details on the energy
transfers in an anisotropic system. This information is very
useful for better understanding of the dynamics in aniso-
tropic turbulence that in turn will help in developing large-
eddy simulation �LES� models for MHD turbulence. More-
over, the present approach allows us to recover easily the
isotropic transfer functions which have been extensively
studied in literature.

II. THEORETICAL FRAMEWORK

The MHD equations for a fluid read in the incompressible
limit as

�ui

�t
= − uj� jui + Bj� jBi + ��2ui + f i − �ip , �1�

�Bi

�t
= − uj� jBi + Bj� jui + ��2Bi, �2�

where ui=ui�x , t� is the fluid velocity field, Bi=Bi�x , t� is the
magnetic field expressed in Alfvén units, and p= p�x , t� is the
total, hydrodynamic+magnetic, pressure field divided by the
constant mass density. The magnetic field Bi is the sum of a
constant part Bi

0 and a turbulent part bi induced by the flow.
The fluid viscosity � and the magnetic diffusivity � are taken
to be equal, so that the magnetic Prandtl number �Pr=� /�� is
unity. The divergence-free force f i= f i�x , t� used in the
present work is chosen to be isotropic so that it does not
introduce any preferred direction. Equations �1� and �2� are
supplemented by the incompressibility condition for the fluid
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�� juj =0� and the divergence-free condition for the magnetic
field �� jbj =0�. Because of the incompressibility condition,
the pressure p can be formally eliminated by solving the
Poisson equation �2p=−�iuj� jui+�ibj� jbi. By convention,
summation over repeated indices is assumed.

In order to describe the dynamics of energy transfers in
MHD turbulence, Eqs. �1� and �2� are solved in a periodic
box using N Fourier modes in each direction. For a given

quantity, the physical Q and the spectral Q̂ representations
are related using the direct and the inverse discrete Fourier
transforms:

Q̂�k� =
1

N3�
x

Q�x�e−ikjxj , �3�

Q�x� = �
k

Q̂�k�eikjxj . �4�

The spectral representations of Eqs. �1� and �2� are easily
derived and read:

� ûi�k�
�t

= − ikj�
�

ûj�q�ûi�p� + ikj�
�

b̂j�q�b̂i�p� + ikjBj
0b̂i�k�

− �k2ûi�k� + f̂ i�k� − ikip̂�k� , �5�

� b̂i�k�
�t

= − ikj�
�

ûj�q�b̂i�p� + ikj�
�

b̂j�q�ûi�p� + ikjBj
0ûi�k�

− �k2b̂i�k� , �6�

where the notation �� stands for the summation over all
values of the vectors p and q under the constraint that p
+q=k. The evolution of the kinetic energy �Eu�k�
= 1

2 �û�k��2� and the magnetic energy �Eb�k�= 1
2 �b̂�k��2� carried

on by the modes with wave vector k are easily derived from
these equations:

�Eu�k�
�t

= − �
�

Su,u
u �k�p�q� + �

�

Sb,b
u �k�p�q� + Lub�k�

− 2�k2Eu�k� + Pf�k� , �7�

�Eb�k�
�t

= − �
�

Sb,u
b �k�p�q� + �

�

Su,b
b �k�p�q� − Lub�k�

− 2�k2Eb�k� , �8�

where

Pf�k� = Re� f̂ i�k�ûi
��k�� , �9�

Lub�k� = kjBj
0 Im�ûi�k�b̂i

��k�� , �10�

and where Re and Im represent the real and imaginary parts
of a complex number, respectively, and � denotes the com-
plex conjugation. The quantity SY,Z

X �k�p�q� is defined as

SY,Z
X �k�p�q� = Im��kjẐj�q���Ŷi�p�X̂i

��k��� �11�

and represents the energy transfer from the mode p of field Y
to the mode k of field X from the interaction with the mode
q of field Z that respects the condition k=p+q. Up to a sign,
the functions SY,Z

X �k�p�q� represent the mode-to-mode energy-

transfer rate introduced in �3,10�. The role of Ẑj�q� is here
assumed to be the mediator of the energy exchange. The
energy equations contain nonlinear SY,Z

X and linear Lub trans-
fer terms as well as dissipative terms proportional to � and �
and source terms Pf. The terminologies “nonlinear” and “lin-
ear” transfers refer to the nature of the terms in the MHD
equations that are responsible for these energy exchanges.
Although, strictly speaking, the induction equation only con-
tains one nonlinear term that can be expressed as the curl of
the cross product between the velocity and the magnetic
field, it is here split into two parts. Both parts have a struc-
ture reminiscent from the nonlinear convective and Lorentz
force terms in the velocity equation. In terms of energy ex-
changes, these two terms have quite distinct roles. The first
one, −uj� jbi, conserves the magnetic energy, while the sec-
ond term, bj� jui, corresponds to the magnetic energy gain
from the exchange with the kinetic energy. This latter term
exactly compensates for the loss of kinetic energy due by the
Lorentz force. In terms of the energy transfers SY,Z

X �k�p�q�,
the conservation of the kinetic energy by the convective non-
linearity −uj� jui is expressed as

0 = Su,u
u �k�p�q� + Su,u

u �k�q�p� + Su,u
u �p�q�k� + Su,u

u �p�k�q�

+ Su,u
u �q�k�p� + Su,u

u �q�p�k� , �12�

while the conservation of the magnetic energy by the term
−uj� jbi is expressed by

0 = Sb,u
b �k�p�q� + Sb,u

b �k�q�p� + Sb,u
b �p�q�k� + Sb,u

b �p�k�q�

+ Sb,u
b �q�k�p� + Sb,u

b �q�p�k� . �13�

It is important to note that the kinetic and magnetic energies
are not conserved individually. The conservation of the total
energy by the MHD equations translates into the following
rather intricate relation:

0 = Sb,b
u �k�p�q� + Sb,b

u �k�q�p� + Sb,b
u �p�q�k� + Sb,b

u �p�k�q�

+ Sb,b
u �q�k�p� + Sb,b

u �q�p�k� + Su,b
b �k�p�q� + Su,b

b �k�q�p�

+ Su,b
b �p�q�k� + Su,b

b �p�k�q� + Su,b
b �q�k�p� + Su,b

b �q�p�k� ,

�14�

Moreover, the following antisymmetry property is automati-
cally satisfied:

SY,Z
X �k�p�q� = − SX,Z

Y �p�k�q� . �15�

It simply states that the energy given by the mode p to the
mode k is opposite to the energy the mode p receives from
mode k, no matter what are the fields to which the modes k
and p belong to. Finally, it must be noted that the linear
transfer terms, in the form given by Eq. �10� representing the
energy gained by u from b, cancel themselves exactly for
each mode independently.

TEACA et al. PHYSICAL REVIEW E 79, 046312 �2009�

046312-2



Statistically stationary state is reached when the turbu-
lence is fully developed. For this state, the energy � injected

by the force f̂ i is equal to the energy losses due to kinetic and
magnetic dissipative effects. Moreover, the energy content of
the spectral modes is also stationary in this state. However,
the fluctuations in the energy balance for a single mode �Eq.
�7� and �8�� are very large. Hence for meaningful statistical
result we need to average over a Fourier subdomain contain-
ing similar modes. Sometimes we also need to employ time
averaging. The choice for partitioning the entire Fourier
space into disjoint subdomains is motivated by the physical
properties of the flow. Each subdomain is indeed expected to
represent a set of modes with similar properties. However, at
this stage, it is not necessary to give an explicit definition for
this partitioning and it will be only assumed to be character-
ized by two integer indices �m ,��. The choice of a sharp
decomposition of the spectral space �disjoint subdomains�
compared to a smooth decomposition �overlapping subdo-
mains� was validated by the studies in �11,12�. The equation
for the energy stored in each of the subdomain is thus trivi-
ally derived from Eqs. �7� and �8�:

�

�t
Eu�m,�� = Nu

u�m,�� + Nb
u�m,�� + Lub

�m,�� − Du�m,�� + Pf�m,��,

�16�

�

�t
Eb�m,�� = Nb

b�m,�� + Nu
b�m,�� − Lub

�m,�� − Db�m,��. �17�

The energy evolution equations first contain contribution
from the nonlinearities in the MHD equations. The terms

NY
X�m,�� 	 �

�n,��
TY�n,��

X�m,�� �18�

correspond to the sum of the nonlinear energy transfers
TY�n,��

X�m,�� to the field X in the ring �m ,�� from the field Y in the
ring �n ,��. Each of these nonlinear transfers is itself the sum
of a large number of triadic interactions:

Tu�n,��
u�m,�� = �

k��m,��
�

p��n,��
− Su,u

u �k�p�q� , �19�

Tb�n,��
u�m,�� = �

k��m,��
�

p��n,��
+ Sb,b

u �k�p�q� , �20�

Tb�n,��
b�m,�� = �

k��m,��
�

p��n,��
− Sb,u

b �k�p�q� , �21�

Tu�n,��
b�m,�� = �

k��m,��
�

p��n,��
+ Su,b

b �k�p�q� . �22�

The major advantage of these definitions is that they natu-
rally satisfy the following expected antisymmetry property:

TY�n,��
X�m,�� = − TX�m,��

Y�n,�� . �23�

The other terms in Eqs. �16� and �17� are defined by

Lub
�m,�� = �

k��m,��
Lub�k� , �24�

Du�m,�� = 2� �
k��m,��

k2Eu�k� , �25�

Db�m,�� = 2� �
k��m,��

k2Eb�k� , �26�

Pf�m,�� = �
k��m,��

Pf�k� . �27�

In Sec. III, the Fourier-space partitioning is based on a
ring decomposition. The first index m in the partition �m ,��
corresponds to the spherical shell decomposition, commonly
used in the investigation of isotropic turbulence. It is based
on the division of the spectral space along the wave-vector
norm k. A shell sm contains all the wave vectors k with the
property km� �k�	km+1 �Fig. 1�a��. The set of shell bound-
aries �km� may of course depend on the problem. The second
index � corresponds to the angular dependency. For simplic-
ity, the mean magnetic field is assumed to be aligned with 1z.
The wave vector k forms an angle 
 with respect to the B0,
with 
� �0,��. The spectral domain is split into angular sec-
tions a� so that each section contains the wave vectors that
have the angle 
 bounded by 
�−1�
	
�. The intersection
between the spherical shells and the angular sections defines
the ring structures rm�=sm�a� �Fig. 1�b��. We term the rings
near 
=� /2 as equatorial rings, and the rings near 
=0 and

=� as polar rings.

In the present paper we will compute energy-transfer
functions �19�–�22� from one ring to another. However, the
ring-to-ring energy transfers defined by Eqs. �19�–�22� must
be normalized in order to compensate for the difference in
number of modes in each angular section. For this reason,
defining A�= �cos 
�−1−cos 
��, the following quantities are
introduced:

T̄Y�n,��
X�m,�� =

1

A�A�

TY�n,��
X�m,��. �28�

We term the above energy-transfer function as ring-to-ring
energy-transfer function. Also, for the same reason, any
quantity Q decomposed into ring variables will be normal-
ized accordantly:

Q̄X�m,�� =
1

A�

QX�m,��. �29�

As it can be observed from Fig. 2, the angular normalization
ensures that a spherical symmetry is observed for isotropic

FIG. 1. �a� Shell decomposition; �b� ring decomposition.
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turbulence. It must be noted however that, according to pre-
vious works on the subject �4–6,12,13�, no normalization
factor is used for compensating for the number of modes in a
shell, roughly proportional to km

2 �km+1−km�. Hence, as long
as shell-to-shell transfers are concerned, absolute values will
be considered. Energy-transfer functions �28� have the fol-
lowing interesting properties:

�a� Since the normalization factor is symmetric in �� ,��,
the functions T̄Y�n,��

X�m,�� inherit the antisymmetry property of the

non-normalized transfers: T̄Y�n,��
X�m,��=−T̄X�m,��

Y�n,�� .
�b� We can compute the shell-to-shell energy transfers by

summing the ring-to-ring energy transfer over the angular
sections,

TY�n�
X�m� = �

�
�
�

A�A�T̄Y�n,��
X�m,��. �30�

The ring-to-ring energy-transfer functions have angular
dependence for anisotropic situations. However, under iso-

tropic conditions, the energy-transfer function T̄Y�n,��
X�m,�� exhib-

its several interesting properties listed below:
�a� Since there is no preferred direction in isotropic situ-

ations, the net ring-to-ring energy transfer along the polar
direction should be zero for a given shell:

T̄Y�m,��
X�m,�� = 0. �31�

�b� The transfer of energy between two given shells de-
pends only on the difference between the angular sections:

T̄Y�n,��
X�m,�� = T̄Y�n,�+��

X�m,�+��, �32�

T̄Y�n,�+��
X�m,�� = T̄Y�n,�−��

X�m,�� , �33�

where � is an integer.
Note however that the instantaneous ring-to-ring energy

transfers are often very noisy, especially at low k because
these rings contain only few modes. Therefore we need to
perform time averaging to compute the average energy-
transfer functions. In addition to the above properties, in the
inertial range, the self-similarity implies that

T̄Y�n,��
X�m,�� = T̄Y�n+a,��

X�m+a,��. �34�

From the ring-to-ring transfer we can also determine the
radial energy flux �coming out of a wave-number sphere�

�Y	
X
�kl� = �

n�l
�
�

�
m
l

�
�

TY�n,��
X�m,��, �35�

and the angular energy flux �coming out of a cone of angle

��

�Y	
X
�
�� = �

n
�
���

�
m

�
�
�

TY�n,��
X�m,��. �36�

As mentioned earlier, the expression for the energy transfers
between two rings is somewhat arbitrary since these transfers
always involve three modes. However, fluxes �35� and �36�
are unambiguous because they represent the total energy
leaving due to a given nonlinear term.

III. NUMERICAL RESULTS

The MHD equations are solved by a pseudospectral code
�14� in a box of length L=2� with periodic boundary con-
ditions with a resolution of N=512 modes in each direction.
The largest wave number is thus kmax=256. The time step is
computed automatically by a Courant-Friedricks-Lewey
�CFL� criterion and the time advancement is based on a
third-order Runge-Kutta scheme. The nonlinear terms are
partially dealiased using a phase-shift method �15,16�.

The force used in the present work is local in Fourier
space. It acts on all the modes within the shell sf = �kinf
=2.4,ksup=3.1�. With such a choice of the forcing shell
boundaries, the number of forced modes is Nf =104. The
forcing injects in each of the forced mode a constant rate of
energy �e�k�=� /Nf and a constant rate of helicity �h�k�
=h /Nf. The large number of forced modes ensures that no
anisotropy effect is induced by the forcing mechanism. The
total energy and helicity injection rates are thus � and h,
respectively, and represent the forcing control parameters

along with the forcing shell sf. In practice, the force f̂ has the
form

f̂�k� = ��k�û�k� + ��k��̂�k� �37�

if �k��sf and zero otherwise. The vector �̂�k� represents the
Fourier modes of the vorticity ��=��u�. Defining the he-
licity as H�k�=Re�û�k� · �̂�k���, we obtain the real param-
eters ��k� and ��k� as

��k� =
1

2Nf

4k2Eu�k��e�k� − H�k��h�k�
4k2Eu�k�2 − H�k�2 ,

��k� =
1

Nf

H�k��e�k� − Eu�k��h�k�
4k2Eu�k�2 − H�k�2 . �38�

For the statistical steady state, when the total dissipation
�kinetic+magnetic� equals the energy injection rate �, the
Taylor microscale Reynolds number reaches R�
210, and
the product between the Kolmogorov length l�= ��3 /��1/4 and
the largest wave number is about kmaxl�
1.23. In the present
study, no helicity is injected by the forcing process.

A first computation has been performed without external
magnetic field �B0=0�, which will be referred to as the iso-
tropic run. Once the statistically stationary state is reached,

FIG. 2. �Color online� The total nonlinear energy transfers to
each ring of field u from field b for the isotropic cases without
angular normalization �left� and with angular normalization �right�.
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the fluctuations of the magnetic field in isotropic turbulence
are measured using the following quantity:

�biso =� 1

L3� d3xb�x,t� · b�x,t� . �39�

An ambient magnetic field is then turned on. Two nonzero B0

that have been considered are �B0�=�biso and �B0�=�10�biso.
These two computations will be referred to as the weak an-
isotropic run and the strong anisotropic run, respectively. For
all runs, the largest one-dimensional integral length scale has
been verified to be smaller than the computational box length
L.

The time evolution of the total energy �Et=Eu+Eb� and
total dissipation ��t=�u+�b� for the three cases analyzed be-
low are presented in Fig. 3. The time at which the ambient
magnetic field is switched on is denoted by t0. Using E0

t �the
total energy at time t0� and the energy injection rate, we
define a characteristic time scale t�=E0

t /�. The following
ring-transfer diagnostics is performed after the initial tran-
sient has disappeared, around t / t�=2. A time average over an
interval of 0.5t� has been used to smooth out the statistics
when presenting energy transfers and energy fluxes. For the
isotropic case the ratio Eu /Eb is about 3.7, while for the weak
anisotropic case the value drops to 2.1 For the strong aniso-
tropic case, due to the strong Alfvénization of the energy, the
Eu /Eb ratio fluctuates between 1.9 and 2.5. From the expres-
sion of the cross helicity,

Hc =
1

L3� d3x u�x,t� · b�x,t� , �40�

we determine the cross-helicity coefficient as Hc /2Et. At the
time the ring statistics was performed, we had a cross-
helicity coefficient of less than 0.01 for the isotropic case,

approximately 0.07 for the weak anisotropic case, and a
value of 0.03 for the strong anisotropic case.

The spectra Et�k�, Et�k��, and Et�k
�, defined as

Et�k�� = 2�� Et�k�k�dk
 , �41�

Et�k
� = 2�� Et�k�k�dk�, �42�

where k�= �kx
2+ky

2�1/2 and k
 = �kz�, are shown in Figs. 4 and
5. In order to display smooth spectra, the number of shells
used to build the curves in Figs. 4 and 5 is typically N /2
=256. It is much larger than the number of shells used in the
discussion of shell-to-shell energy transfers. In our aniso-
tropic simulations, the anisotropic spectrum in the perpen-
dicular direction seems to indicate a k�

−3/2 inertial range
power law. This is in agreement with other works that have

FIG. 3. �Color online� Total-energy �Et� and total-dissipation
��t� evolutions in time. The time at which the external magnetic was
switched on is denoted by t0 and the quantities at that time have the
subscript 0. The isotropic case is represented by the solid black line,
the weak anisotropic case is denoted by the dashed blue line, and
the strong anisotropic case is denoted by the dot-dashed red line.

FIG. 4. �Color online� Total-energy �Et�k�� spectra. The isotro-
pic case is represented by the solid black line, the weak anisotropic
case is denoted by the dashed blue line, and the strong anisotropic
case is denoted by the dot-dashed red line. The dotted line segment
has a −3 /2 slope, while the solid straight line segment has a −5 /3
slope, and both are shown for reference.

FIG. 5. �Color online� Total-energy �Et� spectra. The isotropic
case is represented by the solid black line, the weak anisotropic case
is denoted by the dashed blue line, and the strong anisotropic case is
denoted by the dot-dashed red line. The dotted line segment has a
−3 /2 slope.
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studied this aspect in detail �17,18�. Also, the spectrum in the
k
 direction becomes steeper with the increase in B0 value
�9�. For the isotropic spectra, the choice for the inertial range
power-law exponent is not obvious.

The analysis of the energy transfers is based on a partition
of the Fourier space using Ns=23 spherical shells and 15
angular sections. The shells are defined by sn= �kn ,kn+1�, in
which kn is given by the law kn=2�n+8�/4. The first three shells
are however defined differently, s1= �0,2�, s2= �2,4�, and s3
= �4,8�, in order to ensure that these shells contain enough
modes. The angular sections are taken as constant, with an
angular separation of 12°. The eighth angular section is cen-
tered on the equatorial plane. The energy injection rate � due
to the forcing is split equally between the 104 modes con-
tained in the wave-number shell 2.4�k	3.1. Hence, the
forcing is isotropic and acts only in the shell s2. The force is
identical for the three runs. In Figs. 2 and 6–10, the three-
dimensional Fourier space is projected on a plane in which
the shells sn are represented by annuli with a width propor-
tional to kn+1−kn. The plane is further split into the angular
sections a�. The intersections of the annuli and the angular
sections represent the projections of the rings into a plane
and the intensities of the variables in these rings are color
�grayscale� coded. Only half of the plane is represented since
each ring has two symmetric intersections with it. As a first
example of this representation, the kinetic and magnetic en-
ergies are shown in Fig. 6. Clearly, the energy levels do not
exhibit a strong angular dependence in the weakly aniso-
tropic run.

Throughout the paper, all the figures related to the terms
that appear in Eqs. �16� and �17� use the same color range.
The values displayed are normalized to the total dissipation
�. The plots take into account the width of each shell for
which the boundaries have been normalized to the largest
wave number kmax.

Dissipation levels are represented in Fig. 7. For all three
cases, the total magnetic dissipation is about twice the total
kinetic dissipation. Since the total dissipation has to be equal
to the energy injection rate, the respective levels of kinetic
and magnetic dissipations are thus almost the same in the

three runs. In the isotropic run, no angular variation is ob-
served up to slight fluctuations. On the contrary, in the an-
isotropic runs, the levels of dissipation are clearly angle de-
pendent. The dissipation in the direction of B0 tends to be
suppressed, and the suppression increases with the increase
in the imposed magnetic field. Since global kinetic and mag-
netic dissipations are about the same as in the isotropic case,
the decrease in dissipation in the direction parallel to the
constant magnetic field has to be compensated for by an
increase in dissipation in the perpendicular direction. This
behavior is stronger for larger degrees of anisotropy.

The linear energy exchange rate L̄ub
�m,�� is shown in Fig. 8

using a similar representation. Of course, because this term is
proportional to k ·B0, it is only presented for the two aniso-
tropic runs and it has to vanish in the direction perpendicular
to B0. Interestingly, the transfer is also suppressed in the
parallel direction for larger degrees of anisotropy and tends
to concentrate toward the equatorial rings with the increase
in the ambient magnetic field value.

The complete description of ring-to-ring energy transfers

T̄Y�m,��
X�m,�� would require a four-dimensional representation or a

large number of two-dimensional figures. Instead of a long
collection of figures, we first present the total energy trans-

ferred to a ring from all the other rings �N̄Y
X�m,��� in Fig. 9.

The angular dependency of the transfer functions is evident.

FIG. 6. �Color online� Ring representations of the logarithms
�log10� of the kinetic �top� and of the magnetic �bottom� energies.
Left to right columns indicate the isotropic, weak anisotropic, and
strong anisotropic runs. The values are normalized to the total
energy.

FIG. 7. �Color online� Ring representations of the kinetic �top�
and magnetic �bottom� dissipations. Left to right columns indicate
the isotropic, weak anisotropic, and strong anisotropic runs.

FIG. 8. �Color online� Ring representations of the linear trans-

fers L̄ub
�m,�� for weak anisotropy �left� and strong anisotropy �right�.
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It is interesting to observe that the cross-field transfer �be-
tween the velocity and the magnetic fields� changes sign de-
pending on the direction to B0 for the anisotropic cases. With
the increase in B0, the rings near the equator have stronger
energy transfer compared to the ones near the poles.

These features can be largely explained by the global phe-
nomenology of energy transfers. Indeed, the energy is in-
jected into the system in kinetic form only and in the forcing
range which is very close to the smallest shells. It is dissi-
pated in the large wave-number shells, both by viscous and
Joule effects. Since the analysis is performed in a statistically
stationary regime, energy has to flow from u to b and from
small to large shells. Also, outside the forcing range, the
dissipation in a shell has to be exactly balanced by the total
nonlinear transfer to this shell. Indeed, when summing the
energy transferred to u and b, the linear transfers cancel ex-
actly. Hence, the dissipation �Fig. 7� in a shell is also the
total-energy transfer to this shell, and it is clear that in the
anisotropic cases, energy is preferentially transferred toward
the equatorial plane.

The local energy transfer is among the same u and b
modes. Under steady state, the energy transfer is from u to b
fields to rings both above and below the equator, but close to
the equator. Hence, the energy transfer due to linear term is
also concentrated near the equator. As we will show later, the
energy accumulated due to the linear term is distributed to

the other modes near equator due to nonlinear interactions.
Finally, due to the linear term, energy is constantly and

locally, i.e. inside the same shell, redistributed between u and
b. Combining these effects largely explains Fig. 9, in which
one can see that kinetic energy is pumped from large scales
and from the poles and is locally redistributed by linear ef-
fects to the magnetic field and redistributed through nonlin-
ear transfers to the equatorial plane in both kinetic and mag-
netic forms. In the strong anisotropic case, almost no energy
is left close to the poles and the absolute transfers from the
pole region are very small.

Obviously, the linear and nonlinear contributions to the
cross-field transfer have quite different patterns. In Fig. 10,
both contributions are added to get the total transfer between
u and b. This total transfer tends to be more and more local-
ized in the perpendicular direction to the mean magnetic field
when B0 increases. Moreover, it is significantly smoother
than both the linear and the nonlinear transfers, indicating
that the anisotropic linear transfer is partially compensated
by the nonlinear transfers. Hence, although the nonlinear
transfers do not explicitly depend on the ambient magnetic
field, they become anisotropic because they redistribute ki-
netic and magnetic energies that have been affected by the
presence of B0 in the linear terms.

A more detailed picture of the energy exchange can be
obtained from the analysis of the ring-to-ring transfer func-
tions. In the following, this analysis is limited to shells 8–11
that correspond to the interval k= �16,32�. Although the res-
olution is relatively too low to observe a well-developed in-
ertial range, this interval of wave vectors does exhibit a sort
of plateau in the energy transfer. The giver shell is fixed to
n=9 and the receiving shell m varies in the above-mentioned
interval. The transfer between angular sections is then ana-
lyzed. Figure 11 presents the case of isotropic turbulence. It
is observed that the overall energy transfer from shell n to
shell m=8 is negative, while the transfer to shell m=10 is
positive. This confirms the direct energy cascade of energy

FIG. 9. �Color online� The total nonlinear energy transfer to

each ring. Left to right columns indicate N̄u
u�m,��, N̄b

b�m,��, N̄b
u�m,��,

and N̄u
b�m,��. Top to bottom represent the isotropic, weak anisotropic,

and strong anisotropic runs.

FIG. 10. �Color online� The total cross-field energy transfer to

each ring, left column for N̄b
u�m,��+ L̄ub

�m,�� and right column for

N̄u
b�m,��− L̄ub

�m,��, for weak anisotropy �top� and strong anisotropy
�bottom�, respectively.
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�kinetic and magnetic� since the transfer from a shell corre-
sponding to a large scale to a shell corresponding to a small
scale is positive. Also, on average, for n=m, the u-to-u and
b-to-b energy transfers are zero, as imposed by formula �31�.
Although some transfers are not strictly zero, they remain
very small and simply correspond to fluctuation that would
disappear if a lengthy time averaging was performed. More-
over, the sum over the angular sections vanishes exactly. The
locality of the shell energy transfer is also observed since for
shell m=11 the transfer is very much reduced. From shell-
to-shell analysis, it is known that the cross-field transfer is
strongest inside the same shell. The transfer between angular
sections representation shows that it is also local in angular
sections as the strongest contribution is observed for �=�.

The same quantities from the anisotropic runs are shown
in Figs. 12 and 13. The same features are observed concern-
ing the locality of interactions and the direct cascades. How-
ever, the angular dependence becomes more pronounced for
higher B0. For the strong anisotropic case, the dominant en-
ergy transfer takes place among the rings that are perpen-
dicular to the mean magnetic field �near the equator�. There
is hardly any energy transfer among the rings near the poles.
The following properties are observed for the ring-to-ring
energy transfer under anisotropic situations:

�a� The ring-to-ring energy transfers T̄u�n,��
u�m,��, T̄b�n,��

b�m,��,
T̄b�n,��

u�m,��, and T̄u�n,��
b�m,�� are local and forward when m�n. Careful

observations of Figs. 12 and 13 show that the energy trans-
fers from shell n to n+1 shell are toward the equator.

�b� When m=n �same shell�, the ring-to-ring energy trans-
fer is essentially local; that is, energy flows dominantly from

angular section ��1 to �. Also, T̄u�n,�+1�
u�n,�� 
0 and T̄b�n,�+1�

b�n,��


0 for �=1–7, but T̄u�n,�+1�
u�n,�� 	0 and T̄b�n,�+1�

b�n,�� 	0 for �
=9–15. This implies that the u-to-u and b-to-b energies flow
toward the poles �direction parallel to the mean magnetic

field� within a given shell. Among all T, T̄u�n,8�
u�n,7�, T̄b�n,8�

b�n,7�, T̄u�n,9�
u�n,8�,

and T̄b�n,9�
b�n,8� are the most dominant. In summary, there is sig-

nificant u-to-u and b-to-b energy transfers among the rings in
the same shell, and the energy transfers are strongest near the
equator.

�c� For b-to-u transfer, there is a strong energy transfer
from a b ring to the u ring of the same ring index. For the

ring at the equator, T̄b�n,8�
u�m,8�
0. The b-to-u energy transfers

for the other rings however have opposite signs, i.e.,

T̄b�n,��
u�m,��	0 around ��8. By definition the u-to-b energy

transfer is exactly opposite to the b-to-u energy transfer.
These results are consistent with the energy transfers shown
in Fig. 9, where the equatorial rings of u receive energy
from b field, while, the nonequatorial rings give energy to
the b field.

IV. CONCLUSIONS

The energy transfer in anisotropic MHD turbulence has
been studied using a ring decomposition of the spectral
space. The source of anisotropy is the external ambient mag-
netic field B0. Three runs have been compared. One run cor-
responds to the isotropic system �B0=0�, and the other two

FIG. 11. �Color online� Energy transfers between angular sec-
tions for given shells �isotropic case�. Left to right columns indicate

T̄u�n,��
u�m,��, T̄b�n,��

b�m,��, T̄b�n,��
u�m,��, and T̄u�n,��

b�m,��. For all cases n=9 �the giver
shell index� and from top to bottom, m=8, m=9, m=10, and m
=11 �the receiver shell indices�.

FIG. 12. �Color online� Energy transfers between angular sec-
tions for given shells �weak anisotropic case�. Left to right columns

indicate T̄u�n,��
u�m,��, T̄b�n,��

b�m,��, T̄b�n,��
u�m,��, and T̄u�n,��

b�m,��. For all cases n=9 �the
giver shell index� and from top to bottom, m=8, m=9, m=10, and
m=11 �the receiver shell indices�.
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cases are nonzero B0 that have been referred to as the weakly
anisotropic and strongly anisotropic runs. The energy, energy
dissipation, and energy transfers in the presence of a constant
magnetic field have been shown to depend on the angular
section. The anisotropy becomes more pronounced when the
strength of the mean magnetic field is increased.

We analyze the energy transfers among various rings in
the spectral space. We observe that the dominant energy
transfer is in the direction perpendicular to the mean mag-
netic field, and the energy transfers parallel to the mean mag-
netic field are suppressed. These results are in agreement
with the results reported in the past. Our detailed study
shows that the energy transfers among the rings are also local
and forward, i.e., the dominant energy transfer is to the near-
est rings, and the direction is from smaller wave-number
rings to larger wave-number rings.

For the anisotropic cases, we also find energy transfer
within a shell itself. The u-to-u and b-to-b energy transfers
tend to be away from the equator. However, transfers be-
tween different shells are preferentially directed toward the
equator, and globally this later effect dominates the dynam-
ics. The u fields of rings at the equator receive energy from
the b field of the same rings. However, the u field of the
nonequatorial rings give energy to the b field of the corre-
sponding rings due to nonlinearity.

We also observe significant energy transfer due to the lin-
ear term that is proportional to the mean magnetic field; this
energy transfer is strongly anisotropic. This is an important

feature that might have consequence in MHD turbulence
modeling. For instance, there is a reasonable chance that
models used in LES of isotropic turbulence would be also
suitable for anisotropic MHD turbulence. Indeed, on one
side, the information lost when removing the smallest scales
in a LES does not affect the linear terms but only the non-
linear terms through mode-to-mode couplings. Anisotropy
effects generated by the linear terms would be perfectly cap-
tured in an LES. On the other side, the ambient field explic-
itly affects the linear transfer terms but not the nonlinear
terms. The nonlinear transfers only become anisotropic be-
cause they redistribute kinetic and magnetic energies that
have been affected by the presence of B0 in the linear terms.
There is thus no clear reason to design new models for an-
isotropic MHD turbulence. The same conclusion was
reached in the low-magnetic-Reynolds-number limit �19�.

A nonlocal transfer of energy between the forced velocity
shell and the small-scale magnetic field has been observed in
previous works on forced isotropic turbulence �6,13�. These
nonlocal interactions are clearly related to the forcing and
only affect the forced velocity shell which transfers energy to
the magnetic field at almost all scales. For the anisotropic
cases studied here, these effects are still present and, al-
though not shown here, can be observed in the shell-to-shell
transfer functions. However, the ring-to-ring analysis has
been performed here for shells located in the inertial range.
In this case, the nonlocal effects were not present or they
were too weak to be noticed.

Several extensions of this work could be considered. First,
a different angular decomposition with more sections close
to the equatorial plane might be better adapted to strongly
anisotropic runs since the only active exchanges are in this
region. However, in that case, the number of mode in these
rings might become quite low and a time averaging would
become unavoidable in order to reduce the fluctuation level.
In the present study, the refinement of the angular decompo-
sition has not been explored since it is not expected to reveal
any new phenomenon. Also, the extension of the ring decom-
position method for the Elsässer variables is straightforward.
Finally, forcing with a nonzero helicity injection rate could
also be considered. Preliminary results have already been
obtained for such forcing and a change in the partition of
energy between the velocity and the magnetic fields is ob-
served, while the total-energy level remains unchanged. A
direct consequence of this observation is a change in the
intensity of the energy transfers between the velocity and the
magnetic field depending on the helicity injection level. The
ring decomposition method can also be used to address other
aspects, like passive scalar transport and inertial-range scal-
ing laws for anisotropic turbulence �20–28�.
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